EaRrr: Efficient Agentic Reinforcement Learning
Systems for Large Language Models

Zheyue Tan
Aalto University
zheyue.tan@aalto.fi

Huining Yuan
Tsinghua University
yuanhuiningd@gmail.com

Boxun Li
Infinigence-Al
liboxun@infini-ai.com

Abstract

Reinforcement learning (RL) has become a pivotal compo-
nent of large language model (LLM) post-training, and agen-
tic RL extends this paradigm to operate as agents through
multi-turn interaction and tool use. Scaling such systems
exposes two practical bottlenecks: (1) context length grows
rapidly during training, inflating memory usage and latency,
and triggering out-of-memory (OOM) failures; and (2) in-
termediate tensors accumulate with context length, making
cross-device data movement into a major system bottleneck.

We present EARL, a scalable system for efficient agen-
tic RL. It introduces a parallelism selector that dynamically
adapts model and training parallelism across RL stages based
on sequence length and system load, and a data dispatcher
that performs layout-aware, decentralized exchange of inter-
mediate data batches. Together, these components increase
throughput, reduce long-context failures, and enable stable
large-scale training of agentic LLMs without relying on hard
context length limits or length penalties.

CCS Concepts: « Computing methodologies — Distributed

computing methodologies; Machine learning.

Keywords: Agentic Reinforcement Learning, Large Language
Models (LLMs), Reinforcement Learning (RL), Distributed
Training, Dynamic Parallelism

ACM Reference Format:

Zheyue Tan, Mustapha Abdullahi, Tuo Shi, Huining Yuan, Zelai
Xu, Chao Yu, Boxun Li, and Bo Zhao. 2025. EARL: Efficient Agentic
Reinforcement Learning Systems for Large Language Models. In
1st Workshop on Systems for Agentic AI (SAA ’25), October 13th, 2025,
Seoul, Republic of Korea. ACM, New York, NY, USA, 5 pages.

1 Introduction

Reinforcement Learning (RL) has become a key component
in the post-training of large language models (LLMs), used

SAA’ 25, Seoul, Republic of Korea
2025.

Mustapha Abdullahi

Aalto University
mustapha.abdullahi@aalto.fi

Zelai Xu
Tsinghua University
zelai.eecs@gmail.com

Tuo Shi

Aalto University
tuo.shi@aalto.fi

Chao Yu
Tsinghua University
zoeyuchao@gmail.com

Bo Zhao

Aalto University
bo.zhao@aalto.fi

to align model behavior with human preferences [2, 18] and
to elicit advanced capabilities such as reasoning, tool-use,
and decision-making [4, 7, 23]. Agentic LLMs [3, 16, 17, 23],
which act as autonomous agents interacting with complex en-
vironments, are increasingly prominent and typically trained
with agentic RL involving multi-turn interactions and adap-
tive behavior in response to the environment’s feedback,
achieving superior reasoning and tool-use performance for
real-world applications [3, 11, 16, 28].

During RL training, the context length increases dramat-
ically, initially boosting reasoning performance [7, 22, 25],
but this introduces significant system-level challenges in
memory and communication, limiting overall scalability. Ex-
cessive context growth inflates memory usage and can trig-
ger out-of-memory (OOM) failures. In agentic RL, this issue
is further exacerbated by multi-turn interactions. For exam-
ple, with the Llama-3.1-70B model [14], context lengths of
4,096 and 8,196 require around 97 GB and 354 GB for the
training batch, respectively, exceeding the memory capacity
of existing GPUs [21]. Existing works typically apply a hard
limit on maximum context length, and some even introduce
a length penalty [22] to prevent OOM, but these approaches
also restrict the model’s performance potential.

We observe a similar phenomenon in our industrial prac-
tice (Fig. 1): a 4B-parameter LLM is trained in a Tic-Tac-Toe
environment with a maximum context length of 8,192 (due to
GPU memory constraints), and each episode consists of ap-
proximately three turns. Even early in training (Fig. 1a), the
average single-turn response length increases steadily. ! By
step 13 (Fig. 1b), the episode-level context length reaches the
system limit, causing truncated reasoning and introducing
“low-quality” data into the rollouts. The degradation leads
to a sharp drop in average return and ultimately collapses
learning after step 15 (Fig. 1c).

ITurn-level context length refers to the token length within a single
agent—environment interaction round, while episode-level context length
refers to the cumulative number of tokens across an entire episode.

(a)

c
___________________ — €

80001 system limit S

n 6000 - 0 40-5
< S 2 05

< 4000 $ 70001 o
2 2 2 0.0

3 2000 + 3# 6000 - L
01— Z -051

0 3 6 9 121518 21
Training Step

6 _"", ('3 é 1'2 1'5 1'8 21
Training Step

(') é ('3 E') 1'2 1'5 1'8 21
Training Step

Fig. 1: Training a 4B-parameter LLM on the Tic-Tac-Toe task: (a) turn-level context length steadily increases; (b) episode-level
context length quickly reaches the system limit; and (c) training performance collapses due to context truncation.

Tab. 1: Intermediate Data Batch Size Under Different Context Lengths on a 1k-GPU Cluster.

Context Length 1,024 2,048

4,096 8,192 16,384 32,768

Estimated Size (MiB)

15,625 31,250 62,500

125,000 250,000 500,000

EARL

Parallelism Selector o L 4

[Evaluate system load l

v

T
[Select parallelism config]T’Zg—n

o Experience Preparation

Data Dispatcher @

| Dispatch: All-Gather + Scatter |

All-to-All % N
A
[-U Model Update]

[Select dispatch strategy]

Dispatch training data

Fig. 2: System design of EARL.

Long contexts also hinder scalability by generating mas-
sive volumes of intermediate data that must be exchanged
across nodes, creating substantial communication overhead.
These intermediate batches consist of tensors required to
compute training signals, including tokens, log probabilities,
rewards, returns, and other auxiliary tensors. The estimated
sizes of such batches are reported in Table 1. At the 1K-GPU
scale, the aggregated data volume grows linearly with con-
text length, reaching up to 500 GB at 32K tokens.

In our industrial practice, we have observed this significant
data dispatch bottleneck, exacerbated by increasing context
length when scaling training to 1,024 GPUs. For instance,
while training a model with over 200B parameters at con-
text length 32K using the VeRL framework [19], the data
volume approached 1 TB due to additional implementation
overhead. This amount of data required more than 20 min-
utes for transmission (under a 25 Gbps peak bandwidth),
occupying over 25% of the total iteration time and severely
degrading training throughput. The bottleneck is further
aggravated by VeRL’s single-controller architecture, in which

a centralized process coordinates data exchange across dif-
ferent stages, forcing all intermediate data to be aggregated
on a single node before redistribution.

These challenges reveal a fundamental challenge in scaling
agentic RL: longer contexts boost capability but also strain
memory and communication. Existing safeguards, such as
hard length limits, mitigate resource pressure but also cap per-
formance ceiling. This motivates the design of EArr, which
tackles the context length explosion issue and data dispatch-
ing bottleneck, for stable and efficient large-scale training.

2 EARL Design

We aim to scale agentic RL training to support exploding con-
text lengths arising from response length growth and inten-
sified multi-turn interactions, while simultaneously scaling
training to thousands of GPUs. To this end, we design a scal-
able agentic RL system, EARL, with two extensions: the Paral-
lelism Selector for dynamic parallelism configuration and the
Data Dispatcher for efficient inter-stage data dispatching.

As illustrated in Fig. 2, these components are integrated
into a standard RL training loop, introducing optimizations
at multiple stages. Before the rollout stage (step @), the Par-
allelism Selector evaluates the current system load and the
maximum context length to determine the parallelism con-
figuration for the policy model. Similarly, parallelism con-
figurations for the reference, value, and reward models are
determined before the Experience Preparation stage (step @).
After all data batches are computed, the training parallelism
is also selected based on the current system load and con-
text length requirements. In steps @, @, and @, using the
chosen training parallelism and the data distribution layout
generated during the Experience Preparation stage, the Data
Dispatcher selects an appropriate dispatch strategy and dis-
tributes the batch data accordingly. After completing data
dispatch, all models proceed with respective training updates.
Each component is explained in detail as follows:

Parallelism Selector. EARL uses dynamic parallelism in the
Rollout stage. The parallelism configuration is dynamically

adjusted based on the current system load and the context
length. Specifically, at the start of the training process, EARL
measures the throughput for each parallelism configuration
under different context lengths, then maintains the optimal
configuration for each context length for later use. During
training, EARL monitors the averaged context length gener-
ated by the model. When the averaged context length falls
into a new context range, EARL switches to the corresponding
parallelism configuration before the Rollout stage.

Data Dispatcher. We design the data dispatch logic to be
adaptive to the current data distribution layout and par-
allelism configuration. During the experience preparation
stage, intermediate training batches, including tokens, log-
probabilities, rewards, returns, and other tensors, must be
transferred across all workers, which is a critical bottleneck
with the centralized gather-and-dispatch mechanism in
the single-controller architecture. We introduce a parallelism-
and layout-aware dispatch mechanism that sends data di-
rectly to the target workers from their computation origins,
to eliminate the centralized aggregation. Specifically, we re-
place the all-gather-and-scatter dispatch logic with an
all-to-all operation, thereby reducing both data move-
ment volume and synchronization overhead.

3 Evaluation

We evaluate the components of EARL: (i) Parallelism Selec-
tor (§3.2) and (ii) Data Dispatcher (§3.3), in scenarios where
the context length increases during agentic RL training.

3.1 Experiment Setup

Our experiments have the following setup:

Testbed. We deploy EARL on a cluster of 16 machines (128x
NVIDIA H100-80 GB GPUs). All GPUs are connected with
NVLink. The inter-machine bandwidth is 200 Gbps.
Models and Training Environments. We train Qwen2.5-
72B-Instruct [24] in an agentic setting within the Connect-
Four? environment. The training begins with a tensor paral-
lelism degree of 4, and the initial maximum context length is
set to 8,192. We employ a customized agentic RL algorithm,
which utilizes REINFORCE [9] as the advantage estimator.
Implementation. We have built EArr on top of ROLL [26],
an open-source framework for agentic RL training. The agen-
tic environment, Connect-Four, is implemented with open-
spiel [13] and integrated into ROLL. The Parallelism Selector
is activated before the Rollout stage in each training step.
We optimize the data dispatch logic between the Experience
Preparation stage and the Model Update stage to avoid the
aggregation behavior in the single-controller architecture.
Metrics. We evaluate the performance of Parallelism Selector
by measuring the relative throughput speedup of tokens-per-
GPU-per-second, which is denoted as TGS. Specifically, the

Zhttps://en.wikipedia.org/wiki/Connect_Four

~ 5
m
v 0
o
£ = -5
g
X
G % -20.8% [~10
x
O ¥ --18.0% -25.2% -21.9% | --15
c
S - 20
X _20.0% -28.6% -26.3% -16.6%
- =25
X _21.1% -32.2% -30.7% -29.1% | _30

1
8 16 32 64 128
#Responses

Fig. 3: Relative throughput speedup from TP = 4 to TP = 8
across different context lengths and response counts, com-
puted using Equation 1. Positive values indicate TP8 outper-
forms TP4; negative values indicate TP4 outperforms TP8.

relative speedup of switching from TP = ato TP = b is:

TGS(b) — TGS(a)
Speed b) = ———————= x 100 1
peedup,, (a, b) TGS(a) 1)
where a positive value indicates that TP = b achieves higher
throughput than TP = a.

3.2 Dynamic Parallelism in Rollout Stage

As shown in Fig. 3, we report Speedup,, (4, 8), the relative
throughput improvement in the decoding phase of the Roll-
out stage, when switching the tensor parallelism degree from
TP = 4 to TP = 8. The results demonstrate the effective-
ness of adapting the parallelism configuration to changes
in the increasing context length during training. In practice,
the number of responses for the Rollout stage is typically
fixed, while both response length and context length in-
crease as the multi-turn training progresses. In the case of
#responses = 32, our approach maintains the performance
advantage of TP = 4 (31% higher throughput) when the con-
text length is small. When the context length reaches 16K
and 32K, EARL switches to TP = 8, which yields 5% improve-
ment. In the most extreme case, with 128 responses and a
32K context length, TP=4 encounters out-of-memory (OOM)
failures, whereas switching to TP = 8 maintains system
stability and prevents crashes.

3.3 Optimizing Data Dispatching Between Stages

We optimize the data dispatch logic for transferring log-
probability tensors from the reference model to the training
workers, since these tensors are not required for aggrega-
tion in advantage estimation. The intermediate data sizes
are 46 MiB, 93 MiB, and 187 MiB per independent worker.
As shown in Fig. 4, the data dispatcher consistently achieves
better performance across different context lengths. At a con-
text length of 8K, the optimization reduces transmission time

Baseline
801 mmm EARL
£ 60
>
O
c
9 404
©
|
20 A
11.0x 11.2x
9.8x .
0 , — N |
8K 16K 32K

Context Length

Fig. 4: Data dispatch latency of baseline and EARL under dif-
ferent context lengths. Numbers above the bars indicate the
relative latency reduction of EARL compared to the baseline.

by 9.7%, and when the context length reaches 32K, it yields
up to 11.2x lower latency. The current prototype employs
TCP over Ethernet, identical to the baseline transport, and
we expect further gains with RDMA-based communication.

4 Related Works

Efficient large-scale agentic systems are an area of active re-
search. However, existing agentic RL systems do not optimize
for the dynamic and increasing nature of context length dur-
ing training and rollouts. Instead, they often rely on general
inference techniques for handling long context. VeRL [19],
SkyRL [6], and ROLL [26] incorporate tensor parallelism [20]
and sequence parallelism [10, 12] to enable long context
training. Slime [30] handles long-context during rollouts by
using SGLang’s chunked prefill technique [29]. EARL comple-
ments these systems by introducing dynamic parallelism that
adapts to the context length in Rollout stage and optimizing
the data dispatch logic to improve efficiency at scale.

Other approaches implicitly apply length penalties in
training to constrain context growth [1, 5, 22, 27]. Other
works, such as SkyWork-OR1 [8] and DeepCoder [15] pro-
gressively increase the context length across training stages
to enable effective rollouts at shorter context lengths. Our
work, EARL, is orthogonal to both strategies and focuses
on system-level optimizations that can be utilized with any
training-time technique to scale agentic RL effectively under
long-context regimes.

5 Limitations and Future Work

EARL presents an initial prototype for building efficient agen-
tic RL systems for LLMs, with a focus on addressing the
challenge of context length explosion in agentic RL. For dy-
namic parallelism, we have so far optimized only the Rollout
stage, without extending the optimization to the training
stage. The Rollout stage only performs inference, which
differs significantly in workload from training. Achieving
joint optimization with the training stage requires a more

comprehensive design, but we expect this direction to yield
substantial performance gains.

On the other hand, in data movement, the data dispatch
logic optimization focuses on tensors with minimal inter-
stage dependencies (i.e., log-probabilities are not required
for advantage estimation). However, our approach can be
applied to other tensors, such as rewards and advantages.
In the current system, rewards and returns are aggregated
for advantage estimation. We plan to improve this process
in a distributed manner to alleviate communication bottle-
necks under exploding context lengths, and to better lever-
age all-to-all communication patterns for improved effi-
ciency.

Other future directions include developing fully asynchro-
nous RL for more flexible scheduling, integrating replay
buffers into off-policy training to enhance data dispatch
efficiency, and extending our methods to a broader class
of algorithms. We believe these insights and advances will
guide the development of more efficient and robust agentic
RL systems for LLMs.

6 Conclusion

We address the context length explosion issue in scaling
agentic RL systems and design a framework, EARrL, with two
core components: a Parallelism Selector for dynamic paral-
lelism configuration and a Data Dispatcher for parallelism-
and layout-aware data distribution, both yielding measurable
performance and stability gains in large-scale training,.

7 Acknowledgments

This work is funded by Research Council of Finland (grant
number 362729), Business Finland (grant number 169/31/2024),
and the Finnish Doctoral Program Network in Artificial In-
telligence (AI-DOC).

References

[1] Pranjal Aggarwal and Sean Welleck. 2025. L1: Controlling How Long
A Reasoning Model Thinks With Reinforcement Learning. doi:10.
48550/arXiv.2503.04697 arXiv:2503.04697 [cs] version: 1.

[2] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg,
and Dario Amodei. 2017. Deep reinforcement learning from human
preferences. Advances in neural information processing systems 30
(2017).

[3] Google DeepMind. 2025. Gemini Deep Research — your personal
research assistant — gemini.google. https://gemini.google/overview/
deep-research/.

[4] Qingxiu Dong, Li Dong, Yao Tang, Tianzhu Ye, Yutao Sun, Zhifang

Sui, and Furu Wei. 2025. Reinforcement Pre-Training. arXiv preprint

arXiv:2506.08007 (2025).

Alexander Golubev, Maria Trofimova, Sergei Polezhaev, Ibragim

Badertdinov, Maksim Nekrashevich, Anton Shevtsov, Simon Karasik,

Sergey Abramov, Andrei Andriushchenko, Filipp Fisin, Sergei

Skvortsov, and Boris Yangel. 2025. Training Long-Context, Multi-

Turn Software Engineering Agents with Reinforcement Learning.

doi:10.48550/arXiv.2508.03501 arXiv:2508.03501 [cs] version: 1.

Tyler Griggs, Sumanth Hegde, Eric Tang, Shu Liu, Shiyi Cao, Dacheng

Li, Charlie Ruan, Philipp Moritz, Kourosh Hakhamaneshi, Richard

[5

—

[6

—

https://doi.org/10.48550/arXiv.2503.04697
https://doi.org/10.48550/arXiv.2503.04697
https://gemini.google/overview/deep-research/
https://gemini.google/overview/deep-research/
https://doi.org/10.48550/arXiv.2508.03501

[12

—

(13]

(14]

[15

=

[16]
(17]

(18]

[19

—

[20]

Liaw, Akshay Malik, Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica.
2025. Evolving SkyRL into a Highly-Modular RL Framework.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang,
Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948 (2025).

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng
Cheng, Xiaoyu Zhang, Fuxiang Zhang, Jiacheng Xu, Wei Shen, Siyuan
Li, Liang Zeng, Tianwen Wei, Cheng Cheng, Bo An, Yang Liu, and
Yahui Zhou. 2025. Skywork Open Reasoner 1 Technical Report. doi:10.
48550/arXiv.2505.22312 arXiv:2505.22312 [cs].

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. 2025. Reinforce++:
An efficient rlhf algorithm with robustness to both prompt and reward
models. arXiv preprint arXiv:2501.03262 (2025).

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang,
Shuaiwen Leon Song, Samyam Rajbhandari, and Yuxiong He. 2023.
DeepSpeed Ulysses: System Optimizations for Enabling Training of
Extreme Long Sequence Transformer Models. doi:10.48550/arXiv.2309.
14509 arXiv:2309.14509 [cs].

Linus Jern, Valter Uotila, Cong Yu, and Bo Zhao. 2025. Agent-Q:
Fine-Tuning Large Language Models for Quantum Circuit Generation
and Optimization. doi:10.48550/arXiv.2504.11109 arXiv:2504.11109
[quant-ph] version: 2.

Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee,
Michael Andersch, Mohammad Shoeybi, and Bryan Catanzaro. 2022.
Reducing Activation Recomputation in Large Transformer Models.
d0i:10.48550/arXiv.2205.05198 arXiv:2205.05198 [cs].

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zam-
baldi, Satyaki Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr
Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel Hennes, Dustin
Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, Janos Kramar,
Bart De Vylder, Brennan Saeta, James Bradbury, David Ding, Sebas-
tian Borgeaud, Matthew Lai, Julian Schrittwieser, Thomas Anthony,
Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. 2019. Open-
Spiel: A Framework for Reinforcement Learning in Games. CoRR
abs/1908.09453 (2019). arXiv:1908.09453 [cs.LG] http://arxiv.org/abs/
1908.09453

Al @ Meta Llama Team. 2024. The llama 3 herd of models. arXiv
e-prints (2024), arXiv-2407.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak,
Qingyang Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice We-
ber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. 2025.
DeepCoder: A Fully Open-Source 14B Coder at O3-mini Level. https:
//www.together.ai/blog/deepcoder

OpenAl. 2025. Introducing Deep Research. https://openai.com/index/
introducing-deep-research.

OpenAl 2025. Introducing GPT-5.
introducing-gpt-5

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wain-
wright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Chris-
tiano, Jan Leike, and Ryan Lowe. 2022. Training language models to fol-
low instructions with human feedback. doi:10.48550/arXiv.2203.02155
arXiv:2203.02155 [cs].

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang,
Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. 2025. Hybrid-
flow: A flexible and efficient rlhf framework. In Proceedings of the
Twentieth European Conference on Computer Systems. 1279-1297.
Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2019. Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism.
arXiv preprint arXiv:1909.08053 (2019).

https://openai.com/index/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Nouamane Tazi, Ferdinand Mom, Haojun Zhao, Phuc Nguyen, Mo-
hamed Mekkouri, Leandro Werra, and Thomas Wolf. 2025. The Ultra-
Scale Playbook: Training LLMs on GPU Clusters.

Kimi Team. 2025. Kimi k1. 5: Scaling reinforcement learning with llms.
arXiv preprint arXiv:2501.12599 (2025).

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen,
Ningxin Chen, Ruijue Chen, Yanru Chen, Yuankun Chen, Yutian
Chen, et al. 2025. Kimi K2: Open Agentic Intelligence. arXiv preprint
arXiv:2507.20534 (2025).

Qwen Team. 2024. Qwen2.5: A Party of Foundation Models. https:
//qwenlm.github.io/blog/qwen2.5/

Qwen Team. 2025. Qwen3 Technical Report. doi:10.48550/arXiv.2505.
09388 arXiv:2505.09388 [cs].

Weixun Wang, Shaopan Xiong, Gengru Chen, Wei Gao, Sheng Guo,
Yancheng He, Ju Huang, Jiaheng Liu, Zhendong Li, Xiaoyang Li, Zichen
Liu, Haizhou Zhao, Dakai An, Lunxi Cao, Qiyang Cao, Wanxi Deng,
Feilei Du, Yiliang Gu, Jiahe Li, Xiang Li, Mingjie Liu, Yijia Luo, Zihe
Liu, Yadao Wang, Pei Wang, Tianyuan Wu, Yanan Wu, Yuheng Zhao,
Shuaibing Zhao, Jin Yang, Siran Yang, Yingshui Tan, Huimin Yi, Yuchi
Xu, Yujin Yuan, Xingyao Zhang, Lin Qu, Wenbo Su, Wei Wang, Jiamang
Wang, and Bo Zheng. 2025. Reinforcement Learning Optimization for
Large-Scale Learning: An Efficient and User-Friendly Scaling Library.
doi:10.48550/arXiv.2506.06122 arXiv:2506.06122 [cs].

Violet Xiang, Chase Blagden, Rafael Rafailov, Nathan Lile, Sang Truong,
Chelsea Finn, and Nick Haber. 2025. Just Enough Thinking: Efficient
Reasoning with Adaptive Length Penalties Reinforcement Learning.
doi:10.48550/arXiv.2506.05256 arXiv:2506.05256 [cs] version: 1.

Cong Yu, Valter Uotila, Shilong Deng, Qingyuan Wu, Tuo Shi, Songlin
Jiang, Lei You, and Bo Zhao. 2025. QUASAR: Quantum Assembly
Code Generation Using Tool-Augmented LLMs via Agentic RL. doi:10.
48550/arXiv.2510.00967 arXiv:2510.00967 [cs].

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Sun, Jeff
Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica,
Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. 2024. SGLang:
Efficient Execution of Structured Language Model Programs. doi:10.
48550/arXiv.2312.07104 arXiv:2312.07104 [cs].

Zilin Zhu, Chengxing Xie, Xin Lv, and slime Contributors. 2025. slime:
An LLM post-training framework for RL Scaling. https://github.com/
THUDM/slime

https://doi.org/10.48550/arXiv.2505.22312
https://doi.org/10.48550/arXiv.2505.22312
https://doi.org/10.48550/arXiv.2309.14509
https://doi.org/10.48550/arXiv.2309.14509
https://doi.org/10.48550/arXiv.2504.11109
https://doi.org/10.48550/arXiv.2205.05198
https://arxiv.org/abs/1908.09453
http://arxiv.org/abs/1908.09453
http://arxiv.org/abs/1908.09453
https://www.together.ai/blog/deepcoder
https://www.together.ai/blog/deepcoder
https://openai.com/index/introducing-deep-research
https://openai.com/index/introducing-deep-research
https://openai.com/index/introducing-gpt-5
https://openai.com/index/introducing-gpt-5
https://doi.org/10.48550/arXiv.2203.02155
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.48550/arXiv.2505.09388
https://doi.org/10.48550/arXiv.2505.09388
https://doi.org/10.48550/arXiv.2506.06122
https://doi.org/10.48550/arXiv.2506.05256
https://doi.org/10.48550/arXiv.2510.00967
https://doi.org/10.48550/arXiv.2510.00967
https://doi.org/10.48550/arXiv.2312.07104
https://doi.org/10.48550/arXiv.2312.07104
https://github.com/THUDM/slime
https://github.com/THUDM/slime

	Abstract
	1 Introduction
	2 Earl Design
	3 Evaluation
	3.1 Experiment Setup
	3.2 Dynamic Parallelism in Rollout Stage
	3.3 Optimizing Data Dispatching Between Stages

	4 Related Works
	5 Limitations and Future Work
	6 Conclusion
	7 Acknowledgments
	References

